Solution for 6 is what percent of 160:

6:160*100 =

( 6*100):160 =

600:160 = 3.75

Now we have: 6 is what percent of 160 = 3.75

Question: 6 is what percent of 160?

Percentage solution with steps:

Step 1: We make the assumption that 160 is 100% since it is our output value.

Step 2: We next represent the value we seek with {x}.

Step 3: From step 1, it follows that {100\%}={160}.

Step 4: In the same vein, {x\%}={ 6}.

Step 5: This gives us a pair of simple equations:

{100\%}={160}(1).

{x\%}={ 6}(2).

Step 6: By simply dividing equation 1 by equation 2 and taking note of the fact that both the LHS
(left hand side) of both equations have the same unit (%); we have

\frac{100\%}{x\%}=\frac{160}{ 6}

Step 7: Taking the inverse (or reciprocal) of both sides yields

\frac{x\%}{100\%}=\frac{ 6}{160}

\Rightarrow{x} = {3.75\%}

Therefore, { 6} is {3.75\%} of {160}.

Solution for 160 is what percent of 6:

160: 6*100 =

(160*100): 6 =

16000: 6 = 2666.67

Now we have: 160 is what percent of 6 = 2666.67

Question: 160 is what percent of 6?

Percentage solution with steps:

Step 1: We make the assumption that 6 is 100% since it is our output value.

Step 2: We next represent the value we seek with {x}.

Step 3: From step 1, it follows that {100\%}={ 6}.

Step 4: In the same vein, {x\%}={160}.

Step 5: This gives us a pair of simple equations:

{100\%}={ 6}(1).

{x\%}={160}(2).

Step 6: By simply dividing equation 1 by equation 2 and taking note of the fact that both the LHS
(left hand side) of both equations have the same unit (%); we have

\frac{100\%}{x\%}=\frac{ 6}{160}

Step 7: Taking the inverse (or reciprocal) of both sides yields

\frac{x\%}{100\%}=\frac{160}{ 6}

\Rightarrow{x} = {2666.67\%}

Therefore, {160} is {2666.67\%} of { 6}.