#### Solution for 1.26 is what percent of 1.4:

1.26:1.4*100 =

(1.26*100):1.4 =

126:1.4 = 90

Now we have: 1.26 is what percent of 1.4 = 90

Question: 1.26 is what percent of 1.4?

Percentage solution with steps:

Step 1: We make the assumption that 1.4 is 100% since it is our output value.

Step 2: We next represent the value we seek with {x}.

Step 3: From step 1, it follows that {100\%}={1.4}.

Step 4: In the same vein, {x\%}={1.26}.

Step 5: This gives us a pair of simple equations:

{100\%}={1.4}(1).

{x\%}={1.26}(2).

Step 6: By simply dividing equation 1 by equation 2 and taking note of the fact that both the LHS
(left hand side) of both equations have the same unit (%); we have

\frac{100\%}{x\%}=\frac{1.4}{1.26}

Step 7: Taking the inverse (or reciprocal) of both sides yields

\frac{x\%}{100\%}=\frac{1.26}{1.4}

\Rightarrow{x} = {90\%}

Therefore, {1.26} is {90\%} of {1.4}.

#### Solution for 1.4 is what percent of 1.26:

1.4:1.26*100 =

(1.4*100):1.26 =

140:1.26 = 111.11111111111

Now we have: 1.4 is what percent of 1.26 = 111.11111111111

Question: 1.4 is what percent of 1.26?

Percentage solution with steps:

Step 1: We make the assumption that 1.26 is 100% since it is our output value.

Step 2: We next represent the value we seek with {x}.

Step 3: From step 1, it follows that {100\%}={1.26}.

Step 4: In the same vein, {x\%}={1.4}.

Step 5: This gives us a pair of simple equations:

{100\%}={1.26}(1).

{x\%}={1.4}(2).

Step 6: By simply dividing equation 1 by equation 2 and taking note of the fact that both the LHS
(left hand side) of both equations have the same unit (%); we have

\frac{100\%}{x\%}=\frac{1.26}{1.4}

Step 7: Taking the inverse (or reciprocal) of both sides yields

\frac{x\%}{100\%}=\frac{1.4}{1.26}

\Rightarrow{x} = {111.11111111111\%}

Therefore, {1.4} is {111.11111111111\%} of {1.26}.

Calculation Samples