#### Solution for 10 is what percent of 17.5:

10:17.5*100 =

(10*100):17.5 =

1000:17.5 = 57.142857142857

Now we have: 10 is what percent of 17.5 = 57.142857142857

Question: 10 is what percent of 17.5?

Percentage solution with steps:

Step 1: We make the assumption that 17.5 is 100% since it is our output value.

Step 2: We next represent the value we seek with {x}.

Step 3: From step 1, it follows that {100\%}={17.5}.

Step 4: In the same vein, {x\%}={10}.

Step 5: This gives us a pair of simple equations:

{100\%}={17.5}(1).

{x\%}={10}(2).

Step 6: By simply dividing equation 1 by equation 2 and taking note of the fact that both the LHS
(left hand side) of both equations have the same unit (%); we have

\frac{100\%}{x\%}=\frac{17.5}{10}

Step 7: Taking the inverse (or reciprocal) of both sides yields

\frac{x\%}{100\%}=\frac{10}{17.5}

\Rightarrow{x} = {57.142857142857\%}

Therefore, {10} is {57.142857142857\%} of {17.5}.

#### Solution for 17.5 is what percent of 10:

17.5:10*100 =

(17.5*100):10 =

1750:10 = 175

Now we have: 17.5 is what percent of 10 = 175

Question: 17.5 is what percent of 10?

Percentage solution with steps:

Step 1: We make the assumption that 10 is 100% since it is our output value.

Step 2: We next represent the value we seek with {x}.

Step 3: From step 1, it follows that {100\%}={10}.

Step 4: In the same vein, {x\%}={17.5}.

Step 5: This gives us a pair of simple equations:

{100\%}={10}(1).

{x\%}={17.5}(2).

Step 6: By simply dividing equation 1 by equation 2 and taking note of the fact that both the LHS
(left hand side) of both equations have the same unit (%); we have

\frac{100\%}{x\%}=\frac{10}{17.5}

Step 7: Taking the inverse (or reciprocal) of both sides yields

\frac{x\%}{100\%}=\frac{17.5}{10}

\Rightarrow{x} = {175\%}

Therefore, {17.5} is {175\%} of {10}.

Calculation Samples