Solution for 20 is what percent of 250:

20: 250*100 =

(20*100): 250 =

2000: 250 = 8

Now we have: 20 is what percent of 250 = 8

Question: 20 is what percent of 250?

Percentage solution with steps:

Step 1: We make the assumption that 250 is 100% since it is our output value.

Step 2: We next represent the value we seek with {x}.

Step 3: From step 1, it follows that {100\%}={ 250}.

Step 4: In the same vein, {x\%}={20}.

Step 5: This gives us a pair of simple equations:

{100\%}={ 250}(1).

{x\%}={20}(2).

Step 6: By simply dividing equation 1 by equation 2 and taking note of the fact that both the LHS
(left hand side) of both equations have the same unit (%); we have

\frac{100\%}{x\%}=\frac{ 250}{20}

Step 7: Taking the inverse (or reciprocal) of both sides yields

\frac{x\%}{100\%}=\frac{20}{ 250}

\Rightarrow{x} = {8\%}

Therefore, {20} is {8\%} of { 250}.

Solution for 250 is what percent of 20:

250:20*100 =

( 250*100):20 =

25000:20 = 1250

Now we have: 250 is what percent of 20 = 1250

Question: 250 is what percent of 20?

Percentage solution with steps:

Step 1: We make the assumption that 20 is 100% since it is our output value.

Step 2: We next represent the value we seek with {x}.

Step 3: From step 1, it follows that {100\%}={20}.

Step 4: In the same vein, {x\%}={ 250}.

Step 5: This gives us a pair of simple equations:

{100\%}={20}(1).

{x\%}={ 250}(2).

Step 6: By simply dividing equation 1 by equation 2 and taking note of the fact that both the LHS
(left hand side) of both equations have the same unit (%); we have

\frac{100\%}{x\%}=\frac{20}{ 250}

Step 7: Taking the inverse (or reciprocal) of both sides yields

\frac{x\%}{100\%}=\frac{ 250}{20}

\Rightarrow{x} = {1250\%}

Therefore, { 250} is {1250\%} of {20}.