Solution for 26 is what percent of 25:

26: 25*100 =

(26*100): 25 =

2600: 25 = 104

Now we have: 26 is what percent of 25 = 104

Question: 26 is what percent of 25?

Percentage solution with steps:

Step 1: We make the assumption that 25 is 100% since it is our output value.

Step 2: We next represent the value we seek with {x}.

Step 3: From step 1, it follows that {100\%}={ 25}.

Step 4: In the same vein, {x\%}={26}.

Step 5: This gives us a pair of simple equations:

{100\%}={ 25}(1).

{x\%}={26}(2).

Step 6: By simply dividing equation 1 by equation 2 and taking note of the fact that both the LHS
(left hand side) of both equations have the same unit (%); we have

\frac{100\%}{x\%}=\frac{ 25}{26}

Step 7: Taking the inverse (or reciprocal) of both sides yields

\frac{x\%}{100\%}=\frac{26}{ 25}

\Rightarrow{x} = {104\%}

Therefore, {26} is {104\%} of { 25}.


What Percent Of Table For 26


Solution for 25 is what percent of 26:

25:26*100 =

( 25*100):26 =

2500:26 = 96.15

Now we have: 25 is what percent of 26 = 96.15

Question: 25 is what percent of 26?

Percentage solution with steps:

Step 1: We make the assumption that 26 is 100% since it is our output value.

Step 2: We next represent the value we seek with {x}.

Step 3: From step 1, it follows that {100\%}={26}.

Step 4: In the same vein, {x\%}={ 25}.

Step 5: This gives us a pair of simple equations:

{100\%}={26}(1).

{x\%}={ 25}(2).

Step 6: By simply dividing equation 1 by equation 2 and taking note of the fact that both the LHS
(left hand side) of both equations have the same unit (%); we have

\frac{100\%}{x\%}=\frac{26}{ 25}

Step 7: Taking the inverse (or reciprocal) of both sides yields

\frac{x\%}{100\%}=\frac{ 25}{26}

\Rightarrow{x} = {96.15\%}

Therefore, { 25} is {96.15\%} of {26}.