Solution for 42.91 is what percent of 50:

42.91: 50*100 =

(42.91*100): 50 =

4291: 50 = 85.82

Now we have: 42.91 is what percent of 50 = 85.82

Question: 42.91 is what percent of 50?

Percentage solution with steps:

Step 1: We make the assumption that 50 is 100% since it is our output value.

Step 2: We next represent the value we seek with {x}.

Step 3: From step 1, it follows that {100\%}={ 50}.

Step 4: In the same vein, {x\%}={42.91}.

Step 5: This gives us a pair of simple equations:

{100\%}={ 50}(1).

{x\%}={42.91}(2).

Step 6: By simply dividing equation 1 by equation 2 and taking note of the fact that both the LHS
(left hand side) of both equations have the same unit (%); we have

\frac{100\%}{x\%}=\frac{ 50}{42.91}

Step 7: Taking the inverse (or reciprocal) of both sides yields

\frac{x\%}{100\%}=\frac{42.91}{ 50}

\Rightarrow{x} = {85.82\%}

Therefore, {42.91} is {85.82\%} of { 50}.

Solution for 50 is what percent of 42.91:

50:42.91*100 =

( 50*100):42.91 =

5000:42.91 = 116.52295502214

Now we have: 50 is what percent of 42.91 = 116.52295502214

Question: 50 is what percent of 42.91?

Percentage solution with steps:

Step 1: We make the assumption that 42.91 is 100% since it is our output value.

Step 2: We next represent the value we seek with {x}.

Step 3: From step 1, it follows that {100\%}={42.91}.

Step 4: In the same vein, {x\%}={ 50}.

Step 5: This gives us a pair of simple equations:

{100\%}={42.91}(1).

{x\%}={ 50}(2).

Step 6: By simply dividing equation 1 by equation 2 and taking note of the fact that both the LHS
(left hand side) of both equations have the same unit (%); we have

\frac{100\%}{x\%}=\frac{42.91}{ 50}

Step 7: Taking the inverse (or reciprocal) of both sides yields

\frac{x\%}{100\%}=\frac{ 50}{42.91}

\Rightarrow{x} = {116.52295502214\%}

Therefore, { 50} is {116.52295502214\%} of {42.91}.