Solution for 25 is what percent of 6.25:

25:6.25*100 =

(25*100):6.25 =

2500:6.25 = 400

Now we have: 25 is what percent of 6.25 = 400

Question: 25 is what percent of 6.25?

Percentage solution with steps:

Step 1: We make the assumption that 6.25 is 100% since it is our output value.

Step 2: We next represent the value we seek with {x}.

Step 3: From step 1, it follows that {100\%}={6.25}.

Step 4: In the same vein, {x\%}={25}.

Step 5: This gives us a pair of simple equations:

{100\%}={6.25}(1).

{x\%}={25}(2).

Step 6: By simply dividing equation 1 by equation 2 and taking note of the fact that both the LHS
(left hand side) of both equations have the same unit (%); we have

\frac{100\%}{x\%}=\frac{6.25}{25}

Step 7: Taking the inverse (or reciprocal) of both sides yields

\frac{x\%}{100\%}=\frac{25}{6.25}

\Rightarrow{x} = {400\%}

Therefore, {25} is {400\%} of {6.25}.

Solution for 6.25 is what percent of 25:

6.25:25*100 =

(6.25*100):25 =

625:25 = 25

Now we have: 6.25 is what percent of 25 = 25

Question: 6.25 is what percent of 25?

Percentage solution with steps:

Step 1: We make the assumption that 25 is 100% since it is our output value.

Step 2: We next represent the value we seek with {x}.

Step 3: From step 1, it follows that {100\%}={25}.

Step 4: In the same vein, {x\%}={6.25}.

Step 5: This gives us a pair of simple equations:

{100\%}={25}(1).

{x\%}={6.25}(2).

Step 6: By simply dividing equation 1 by equation 2 and taking note of the fact that both the LHS
(left hand side) of both equations have the same unit (%); we have

\frac{100\%}{x\%}=\frac{25}{6.25}

Step 7: Taking the inverse (or reciprocal) of both sides yields

\frac{x\%}{100\%}=\frac{6.25}{25}

\Rightarrow{x} = {25\%}

Therefore, {6.25} is {25\%} of {25}.