#### Solution for 7.2 is what percent of 48:

7.2:48*100 =

(7.2*100):48 =

720:48 = 15

Now we have: 7.2 is what percent of 48 = 15

Question: 7.2 is what percent of 48?

Percentage solution with steps:

Step 1: We make the assumption that 48 is 100% since it is our output value.

Step 2: We next represent the value we seek with {x}.

Step 3: From step 1, it follows that {100\%}={48}.

Step 4: In the same vein, {x\%}={7.2}.

Step 5: This gives us a pair of simple equations:

{100\%}={48}(1).

{x\%}={7.2}(2).

Step 6: By simply dividing equation 1 by equation 2 and taking note of the fact that both the LHS
(left hand side) of both equations have the same unit (%); we have

\frac{100\%}{x\%}=\frac{48}{7.2}

Step 7: Taking the inverse (or reciprocal) of both sides yields

\frac{x\%}{100\%}=\frac{7.2}{48}

\Rightarrow{x} = {15\%}

Therefore, {7.2} is {15\%} of {48}.

#### Solution for 48 is what percent of 7.2:

48:7.2*100 =

(48*100):7.2 =

4800:7.2 = 666.66666666667

Now we have: 48 is what percent of 7.2 = 666.66666666667

Question: 48 is what percent of 7.2?

Percentage solution with steps:

Step 1: We make the assumption that 7.2 is 100% since it is our output value.

Step 2: We next represent the value we seek with {x}.

Step 3: From step 1, it follows that {100\%}={7.2}.

Step 4: In the same vein, {x\%}={48}.

Step 5: This gives us a pair of simple equations:

{100\%}={7.2}(1).

{x\%}={48}(2).

Step 6: By simply dividing equation 1 by equation 2 and taking note of the fact that both the LHS
(left hand side) of both equations have the same unit (%); we have

\frac{100\%}{x\%}=\frac{7.2}{48}

Step 7: Taking the inverse (or reciprocal) of both sides yields

\frac{x\%}{100\%}=\frac{48}{7.2}

\Rightarrow{x} = {666.66666666667\%}

Therefore, {48} is {666.66666666667\%} of {7.2}.

Calculation Samples